



# Course Specification (Bachelor)

### Course Title: Modern Physics

Course Code: PHYS26361

Program: Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 3

Last Revision Date: 25 July 2023







### **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| 1. Course Identification                                                       | 3 |
| 2. Teaching mode (mark all that apply)                                         | 3 |
| 3. Contact Hours (based on the academic semester)                              | 3 |
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 4 |
| D. Students Assessment Activities                                              | 5 |
| E. Learning Resources and Facilities                                           | 6 |
| 1. References and Learning Resources                                           | 6 |
| 2. Required Facilities and equipment                                           | 6 |
| F. Assessment of Course Quality                                                | 6 |
| G. Specification Approval Data                                                 | 7 |





### A. General information about the course:

3

### **1. Course Identification**

### 1. Credit hours:

#### 2. Course type

| Α. | University 🗆                                   | College 🗆 | <b>D</b> epartment⊠ | Track                                   | Others 🗆 |
|----|------------------------------------------------|-----------|---------------------|-----------------------------------------|----------|
| Β. | Required 🖂                                     | Elective  |                     |                                         |          |
| 3. | 3. Level/year at which this course is offered: |           |                     | 5 <sup>th</sup> Level / 3 <sup>rd</sup> | year     |
|    |                                                |           |                     |                                         |          |

#### 4. Course general Description

The course of modern physics is devoted to the main results in physics, which were achieved in the 20-th century. This course introduces the special theory of relativity, the basic concepts of quantum mechanics and atomic physics.

#### 5. Pre-requirements for this course:

NA

#### 6. Co- requirements for this course:

#### NA

#### 7. Course Main Objective(s)

Recognize the relativity, the basic concepts quantum mechanics and atomic physics.

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1. | Traditional classroom                                                     | 3             | 100%       |
| 2. | E-learning                                                                |               |            |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4. | Distance learning                                                         |               |            |

### 3. Contact Hours (based on the academic semester)

| No | Activity | Contact Hours |
|----|----------|---------------|
| 1. | Lectures | 45            |





| 2. | Laboratory/Studio |    |
|----|-------------------|----|
| 3. | Field             |    |
| 4. | Tutorial          |    |
| 5. | Others (specify)  |    |
|    | Total             | 45 |

# **B. Course Learning Outcomes (CLOs), Teaching Strategies and**

# Assessment Methods

| Code | Course Learning Outcomes                       | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies | Assessment<br>Methods   |  |
|------|------------------------------------------------|-----------------------------------------|------------------------|-------------------------|--|
| 1.0  | Knowledge and understanding                    |                                         |                        |                         |  |
| 1.1  | Define the principles of relativity.           | K.2                                     |                        | Writton toct            |  |
| 1.2  | Recognize the principles of quantum physics.   | K.2                                     | Lectures               | Reports                 |  |
| 1.3  | Define the fundamentals properties of atom.    | K.2                                     | Solve problems         | Quizzes                 |  |
| 2.0  | Skills                                         |                                         |                        |                         |  |
| 2.1  | Solve problem related to the S.1 Writt         |                                         | Written test           |                         |  |
| 2.2  | Apply the principles of quantum physics.       | S.1                                     | Solve problems. Homewo |                         |  |
| 2.3  | Solve problem related to atom.                 | S.1                                     |                        | Quizzes                 |  |
| 3.0  | Values, autonomy, and responsib                | ility                                   |                        |                         |  |
| 3.1  | Exhibit self-learning skills<br>independently. | V.2                                     | Self-learning          | Reports<br>Presentation |  |

### **C. Course Content**

| No | List of Topics                                                                                                                                                           | Contact Hours |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | <ul><li>Relativity</li><li>1. The principle of Galilean relativity.</li><li>2. The Michelson–Morley experiment.</li><li>3. Einstein's principle of relativity.</li></ul> | 4.5           |
| 2. | <ul><li>Relativity</li><li>4. Consequences of the special theory of relativity.</li><li>5. The Lorentz transformation equations.</li></ul>                               | 4.5           |
| 3. | <ul><li><b>Relativity</b></li><li>7. Relativistic linear momentum.</li><li>6. The Lorentz velocity transformation equations.</li></ul>                                   | 4.5           |
| 4. | Relativity<br>8. Relativistic energy.                                                                                                                                    | 4.5           |





|     | 9. The general theory of relativity.                                                                                                                                                   |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.  | <ul><li>Introduction to Quantum Physics</li><li>1. Blackbody radiation and Planck's hypothesis.</li><li>2. The photoelectric effect.</li></ul>                                         | 4.5 |
| 6.  | <ul><li>Introduction to Quantum Physics</li><li>3. The Compton effect.</li><li>4. The nature of electromagnetic waves.</li><li>5. The wave properties of particles.</li></ul>          | 4.5 |
| 7.  | <ul><li>Introduction to Quantum Physics</li><li>6. A new model: the quantum particle.</li><li>7. The double-slit experiment revisited.</li><li>8. The uncertainty principle.</li></ul> | 4.5 |
| 8.  | <ul><li>Atomic Physics</li><li>1. Atomic spectra of gases.</li><li>2. Early models of the atom.</li></ul>                                                                              | 4.5 |
| 9.  | Atomic Physics 3. Bohr's model of the hydrogen atom.                                                                                                                                   | 4.5 |
| 10. | Atomic Physics<br>4. Physical interpretation of the quantum numbers.                                                                                                                   | 4.5 |
|     | Total                                                                                                                                                                                  | 45  |

**Table:** The matrix of consistency between the content and the learning outcomes of the course.

|          |     | Course Learning Outcomes |     |     |     |     |     |
|----------|-----|--------------------------|-----|-----|-----|-----|-----|
|          | 1.1 | 1.2                      | 1.3 | 1.1 | 1.2 | 1.3 | 3.1 |
| Topic 1  | ✓   |                          |     | √   |     |     | ✓   |
| Topic 2  | ✓   |                          |     | √   |     |     | ✓   |
| Topic 3  | ✓   |                          |     | √   |     |     | ✓   |
| Topic 4  | ✓   |                          |     | √   |     |     | ✓   |
| Topic 5  |     | ✓                        |     |     | ✓   |     | ✓   |
| Topic 6  |     | ✓                        |     |     | ✓   |     | ✓   |
| Topic 7  |     | ✓                        |     |     | ✓   |     | ✓   |
| Topic 8  |     |                          | ✓   |     |     | √   | ✓   |
| Topic 9  |     |                          | ✓   |     |     | √   | ✓   |
| Topic 10 |     |                          | ✓   |     |     | ✓   | ✓   |

### **D. Students Assessment Activities**

| No | Assessment Activities *                       | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-----------------------------------------------|--------------------------------------|-----------------------------------------|
| 1. | Homework, quizzes, reports, and presentation. | 1: 15                                | 10 %                                    |
| 2. | First term exam                               | 7: 8                                 | 20 %                                    |
| 3. | Second term exam                              | 12:13                                | 20 %                                    |





| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 4. | Final exam              | End of<br>Semester                   | 50 %                                    |

# E. Learning Resources and Facilities

### **1. References and Learning Resources**

| Essential References     | <ul> <li>Physics for Scientists and Engineers, 10th Edition, by Raymond<br/>A. Serway, John W. Jewett, BROOKS/COLE CENGAGE Learning,<br/>Boston USA, ASIN: B00E6TSR92, (2019).</li> </ul>                           |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Supportive References    | <ul> <li>Fundamentals of Physics Extended, 12th Edition, David Halliday, Robert Resnick, Jearl Walker, Wiley, 2021.</li> <li>Concepts of Modern Physics, 6th edition, Arthur beiser, McGraw USA, (2003).</li> </ul> |  |  |
| Electronic Materials     | <ul> <li>Blackboard.</li> <li>PowerPoint presentations.</li> <li>Digital library of University of Bisha<br/><u>https://ub.deepknowledge.io/Bisha</u></li> </ul>                                                     |  |  |
| Other Learning Materials | NA                                                                                                                                                                                                                  |  |  |

### 2. Required Facilities and equipment

| Items                | Resources                 |
|----------------------|---------------------------|
| facilities           | Classrooms, Physics lab.  |
| Technology equipment | Data show or smart board. |
| Other equipment      | NA                        |

# F. Assessment of Course Quality

| Assessment Areas/Issues                            | Assessor            | Assessment Methods                                 |
|----------------------------------------------------|---------------------|----------------------------------------------------|
| Extent of achievement of course learning outcomes. | Teachers, students. | Direct (Final exams),<br>Indirect (Questionnaire). |
| Effectiveness of teaching.                         | Teachers, students. | Indirect (Questionnaire)                           |
| Effectiveness of assessment.                       | Teachers, students. | Indirect (Questionnaire)                           |
| Quality of learning resources                      | Teachers, students. | Indirect (Questionnaire)                           |
| Quality of facilities available                    | Teachers, students. | Indirect (Questionnaire)                           |
| Fairness of evaluation                             | Peer reviewer.      | Direct (Final exams reevaluation).                 |





# G. Specification Approval Data

| COUNCIL /COMMITTEE | College of Science Council |  |
|--------------------|----------------------------|--|
| REFERENCE NO.      | 20                         |  |
| DATE               | 17 August 2023             |  |

